U. Omasits,
A. R. Varadarajan,
M. Schmid,
S. Goetze,
D. Melidis,
M. Bourqui,
O. Nikolayeva,
M. Quebatte,
A. Patrignani,
C. Dehio,
J. E. Frey,
M. D. Robinson,
B. Wollscheid, and
C. H. Ahrens
Genome Research,
27
,
2083-2095,
2017
Selected publications that used/referenced the iPtgxDB solution
Dimonaco NJ, et al. 2023. StORF-Reporter: finding genes between genes. Nucleic Acids Research gkad814. [Online ahead of print]. 10.1093/nar/gkad814.
Genth J, et al. 2023. Identification of proteoforms of short open reading frame-encoded peptides in Blautia producta under different cultivation conditions. Microbiology Spectrum e0252823. [Online ahead of print]. 10.1128/spectrum.02528-23.
Fuchs S and Engelmann S. 2023. Small proteins in bacteria – Big challenges in prediction and identification. Proteomics e2200421. [Online ahead of print]. 10.1002/pmic.202200421.
Meier-Credo J, et al. 2023. Detection of Known and Novel Small Proteins in Pseudomonas stutzeri Using a Combination of Bottom-Up and Digest-Free Proteomics and Proteogenomics. Analytical Chemistry 95:11892-11900. 10.1021/acs.analchem.3c00676.
Hug S, et al. 2023. Paraburkholderia sabiae Uses One Type VI Secretion System (T6SS-1) as a Powerful Weapon against Notorious Plant Pathogens. Microbiology Spectrum 11:e0162223. 10.1128/spectrum.01622-23.
Hadjeras L, et al. 2023. Unraveling the small proteome of the plant symbiont Sinorhizobium meliloti by ribosome profiling and proteogenomics. microLife 4:uqad012. 10.1093/femsml/uqad012.
Hadjeras L, et al. 2023. Revealing the small proteome of Haloferax volcanii by combining ribosome profiling and small-protein optimized mass spectrometry. microLife 4:uqad001. 10.1093/femsml/uqad001.
Fijalkowski I, et al. 2022. Hidden in plain sight: challenges in proteomics detection of small ORF-encoded polypeptides. microLife 3:uqac005. 10.1093/femsml/uqac005.
Aggarwal S, et al. 2022. False discovery rate: the Achilles’ heel of proteogenomics. Briefings in Bioinformatics 23:5. 10.1093/bib/bbac163.
Fancello L & Burger T. 2022. An analysis of proteogenomics and how and when transcriptome-informed reduction of protein databases can enhance eukaryotic proteomics. Genome Biology 23:1. 10.1186/s13059-022-02701-2.
Zhu H, et al. 2022. Ac-LysargiNase efficiently helps genome reannotation of Mycolicibacterium smegmatis MC2 155. Journal of Proteomics 264. 10.1016/j.jprot.2022.104622.
Chen L, et al. 2022. The Small Open Reading Frame-Encoded Peptides: Advances in Methodologies and Functional Studies. ChemBioChem 23:e202100534. 10.1002/cbic.202100534.
Escudeiro P, et al. 2022. Functional characterization of prokaryotic dark matter: the road so far and what lies ahead. Current Research in Microbial Sciences 3:100159. 10.1016/j.crmicr.2022.100159.
Ahrens CH, et al. 2022. A Practical Guide to Small Protein Discovery and Characterization Using Mass Spectrometry Journal of Bacteriology 204:1. 10.1128/jb.00353-21.
Stringer A, et al. 2022. Identification of Novel Translated Small Open Reading Frames in Escherichia coli Using Complementary Ribosome Profiling ApproachesJournal of Bacteriology 204:1. 10.1128/JB.00352-21.
Kimbrel JA, et al. 2022. Prokaryotic genome annotation. Methods in Molecular Biology 2349:193-214. 10.1007/978-1-0716-1585-0_10.
He C, et al. 2021. Proteogenomics Integrating Novel Junction Peptide Identification Strategy Discovers Three Novel Protein Isoforms of Human NHSL1 and EEF1B2. Journal of Proteome Research 20:5294-5303. 10.1021/acs.jproteome.1c00373.
Parmar BS, et al. 2021. Identification of Non-Canonical Translation Products in C. elegans Using Tandem Mass Spectrometry. Frontiers in Genetics 12. 10.3389/fgene.2021.728900.
Fijalkowski I, et al. 2021. Small Protein Enrichment Improves Proteomics Detection of sORF Encoded Polypeptides. Frontiers in Genetics 12. 10.3389/fgene.2021.713400.
Yu S, et al. 2021. Proteogenomic analysis provides novel insight into genome annotation and nitrogen metabolism in nostoc sp. pcc 7120. Microbiology Spectrum 9:2. 10.1128/Spectrum.00490-21.
Vitorino R, et al. 2021. Peptidomics and proteogenomics: background, challenges and future needs. Expert Review of Proteomics 2021. 10.1080/14789450.2021.1980388.
Cassidy L, et al. 2021. Bottom-up and top-down proteomic approaches for the identification, characterization, and quantification of the low molecular weight proteome with focus on short open reading frame-encoded peptides. Proteomics 21:23-24. 10.3389/10.1002/pmic.202100008.
Fuchs S, et al. 2021. Towards the characterization of the hidden world of small proteins in Staphylococcus aureus, a proteogenomics approach. PLOS Genetics 17:6. 10.1371/journal.pgen.1009585.
Jorge GL, et al. 2021. Identification of novel protein-coding sequences in Eucalyptus grandis plants by high-resolution mass spectrometry. Biochimica et Biophysica Acta-Proteins and Proteomics 1869:3. 10.1016/j.bbapap.2020.140594.
Petruschke H, et al. 2021. Discovery of novel community-relevant small proteins in a simplified human intestinal microbiome. Microbiome 9:1. 10.1186/s40168-020-00981-z.
Vitorino R, et al. 2021. The role of micropeptides in biology. Cellular and Molecular Life Science 78:3285-3298. 10.1007/s00018-020-03740-3.
Tariq MU, et al. 2021. Methods for Proteogenomics Data Analysis, Challenges, and Scalability Bottlenecks: A Survey. IEEE Access 9:5497-5516. 10.1109/ACCESS.2020.3047588.
Varadarajan AR, et al. 2020. An integrated model system to gain mechanistic insights into biofilm formation and antimicrobial resistance development in Pseudomonas aeruginosa MPAO1. NPJ Biofilms and Microbiomes 6:1 10.1038/s41522-020-00154-8.
Bartel J, et al. 2020. Optimized Proteomics Workflow for the Detection of Small Proteins. Journal of Proteome Research 19:4004-4018. 10.1021/acs.jproteome.0c00286.
Dahal S, et al. 2020. Synthesizing Systems Biology Knowledge from Omics Using Genome-Scale Models. Proteomics 20:1900282. 10.1002/pmic.201900282.
Lutz S, et al. 2020. Harnessing the Microbiomes of Suppressive Composts for Plant Protection: From Metagenomes to Beneficial Microorganisms and Reliable Diagnostics. Frontiers in Microbiology 11:1810. 10.3389/fmicb.2020.01810.
Reva ON, et al. 2020. Complete genome sequence and epigenetic profile of Bacillus velezensis UCMB5140 used for plant and crop protection in comparison with other plant-associated Bacillus strains. Applied Microbiology and Biotechnology 104:7643-7656. 10.1007/s00253-020-10767-w.
Schulze S, et al. 2020. The Archaeal Proteome Project advances knowledge about archaeal cell biology through comprehensive proteomics. Nature Communications 11:1. 10.1038/s41467-020-16784-7.
Melior H, et al. 2020. The Leader Peptide peTrpL Forms Antibiotic-Containing Ribonucleoprotein Complexes for Posttranscriptional Regulation of Multiresistance Genes. MBIO 11:3. 10.1128/mBio.01027-20.
De Vrieze M, et al. 2020. Linking Comparative Genomics of Nine Potato-Associated Pseudomonas Isolates With Their Differing Biocontrol Potential Against Late Blight. Frontiers in Microbiology 11:857. 10.3389/fmicb.2020.00857.
Varadarajan AR, et al. 2020. A Proteogenomic Resource Enabling Integrated Analysis of Listeria Genotype-Proteotype-Phenotype Relationships. Journal of Proteome Research. 19:1647-1662. 10.1021/acs.jproteome.9b00842.
Reva ON, et al. 2019. Genetic, epigenetic and phenotypic diversity of four Bacillus velezensis strains used for plant protection or as probiotics. Frontiers in Microbiology 10:2610. 10.3389/fmicb.2019.02610.
Machado KCT, et al. 2019. On the impact of the pangenome and annotation discrepancies while building protein sequence databases for bacteria proteogenomics. Frontiers in Microbiology 10:1410. 10.3389/fmicb.2019.01410.
Agrawal A, et al. 2019. Global proteome profiling reveals drug-resistant traits in Elizabethkingia meningoseptica: An opportunistic nosocomial pathogen. OMICS-A Journal of Integrative Biology 23:318-326. 10.1089/omi.2019.0039.
Fernandez N, Cabrera JJ, Varadarajan AR, et al. 2019. An integrated systems approach unveils new aspects of microoxia-mediated regulation in Bradyrhizobium diazoefficiens. Frontiers in Microbiology 10:924. 10.3389/fmicb.2019.00924.
Tong X & Liu S. 2019. CPPred: coding potential prediction based on the global description of RNA sequence. Nucleic Acids Research 47:e43. 10.1093/nar/gkz087.
Low TY. 2019. Connecting Proteomics to Next-Generation Sequencing: Proteogenomics and Its Current Applications in Biology. Proteomics 19:10 10.1002/pmic.201800235.
Manes NP & Nita-Lazar A. 2018. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research. Journal of Proteomics 189:75-90. 10.1016/j.jprot.2018.02.008.
Yang M, et al. 2018. Genome Annotation of a Model Diatom Phaeodactylum tricornutum Using an Integrated Proteogenomic Pipeline. Molecular Plant 11:1292-1307. 10.1016/j.molp.2018.08.005.
Schmid M, et al. 2018. Pushing the limits of de novo genome assembly for complex prokaryotic genomes harboring very long, near identical repeats. Nucleic Acids Research 46:8953-8965. 10.1093/nar/gky726.
Lardi M & Pessi G. 2018. Functional genomics approaches to studying symbioses between legumes and nitrogen-fixing rhizobia. High Throughput 7: pii: E15. 10.3390/ht7020015.
Zengerer V, et al. 2018. Pseudomonas orientalis F9: A Potent Antagonist against Phytopathogens with Phytotoxic Effect in the Apple Flower. Frontiers in Microbiology 9:145. 10.3389/fmicb.2018.00145.
Schmid M, et al. 2018. Comparative genomics of completely sequenced Lactobacillus helveticus genomes provides insights into strain-specific genes and resolves metagenomics data down to the strain level. Frontiers in Microbiology 9:63. 10.3389/fmicb.2018.00063.
Publications that relied on an early prototype/mentioned the concept
Čuklina J, et al. 2016. Genome-wide transcription start site mapping of Bradyrhizobium japonicum grown free-living or in symbiosis - a rich resource to identify new transcripts, proteins and to study gene regulation. BMC Genomics 17:302. 10.1186/s12864-016-2602-9.
Carlier AL, Omasits U, Ahrens CH, Eberl L. 2013. Proteomics analysis of Psychotria leaf nodule symbiosis: improved genome annotation and metabolic predictions. Molecular Plant-Microbe Interactions 26:1325-1333. 10.1094/MPMI-05-13-0152-R.
Omasits U, et al. 2013. Directed shotgun proteomics guided by saturated RNA-seq identifies a complete expressed prokaryotic proteome. Genome Research 23:1916-1927. 10.1101/gr.151035.112.